Categories
Andrea Patry Kevin Spaans Matthew Parker Vera Parlac

Soft Agile Spaces

Date: 2014
Client: n/a
Principal Investigator: Vera Parlac
Collaborators: n/a
Project Budget: Withheld
Research Assistants/ Project Team: Matt Parker,
Andrea Patry, Kevin Spaans
Sponsors: University of Calgary Seed Grant
Publications:  “Material as Mechanism in Agile Spaces”, in B.Kolarevic and V. Parlac Building Dynamics: Exploring Architecture of Change, United States, Routledge, June 2015

Project Description: Soft Agile Spaces project relies on non-mechanical material-based actuation using shape memory alloy springs (SMA) that are integrated into the structural lattice of the surfaces. The movement resulting from the material-based actuation of the lattice is augmented by an inflatable soft robot surface that extends the lattice system. The network of sensors distributed throughout the surface serves to enable information exchange between the surface, environment, and people. The Soft Agile Space project proposes an adaptable and responsive building envelope capable of sensing its environment and responding to it by changing its shape or revealing small occupiable spaces to passers-by. These spaces can provide shelter or mediate the temperature of the environment, making public spaces in harsh, cold climates more vibrant.

The “intelligence” of the surface’s physical environment is capable of incorporating climate and human-related conditions into its working. By sensing the environmental temperature, the surface can mediate between the internal and external environments.

Categories
Matthew Parker Vera Parlac

Agile Spaces

Date: 2013
Client: n/a
Principal Investigator: Vera Parlac
Collaborators: n/a
Project Budget: Withheld
Research Assistants/ Project Team: Matt Parker
Sponsors: University of Calgary Seed Grant
Publications: “Agile Spaces” published in the Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA): Adaptive Architecture, University of Waterloo, Cambridge, Ontario, 2013
Agile Spaces/ Iconic/ SKiN“, Responsive Architecture Research Team V. Parlac and B. Kolarevic, in Facing the Future, Exhibition Book, 2nd International Scientific Conference and Exhibition, Gallery of Science and Technology, Belgrade, Serbia, 2014

The backbone of this project is a kinetic material system actuated by shape memory alloy (SMA) springs. The material system is developed both as a physical and digital prototype. Its behavior is examined at a physical level and the findings are used to digitally simulate behavior of the larger system. The system utilizes a lattice structure and its structural behavior. It relies on elastic deformation of the constituent members, which allows the forces of bending to be distributed along a wider region of the surface. The system becomes kinetic when the SMA spring actuators are activated. Activation of the springs introduces tension into the lattice members that causes change in the geometry of the lattice cells. The result of this is bending of the wider region of the surface. The lattice can be actuated in the lower or upper zone. Depending on the zone of actuation the lattice deforms and moves upwards or downwards. The contraction of the SMA spring produces a tension in the middle layer of the lattice, which manifests through the deformation of the cell structure, bending an entire region of the lattice. Strategic placement of the actuators across the lattice produces accumulated bending effect and deforms the entire surface.